

1

 Course: Big Data Analytics

Professor: Dr. Zeng, Yinghui

Final Project: A Nutch-Based Search Engine with web-interface

Team Member: Guanghan Ning, Trung Nguyen

0. Scope of the Final Project:

Before choosing to work on Web Search Engine, we were inspired mainly by the

Nutch paper in which Nutch search engine is described as an open-source project that

is rarely available to software developers for researching, developing and deploying a

web search engine. Nutch search engine was built on top of Hadoop and Hadoop

Distributed File System (HDFS). And it also supports Hbase as one of options for

storing data distribute on HDFS. Besides, Nutch is a medium-scale search engine

which is suitable for organizational purposes, instead of commercial ones as other

popular web search engines such as Google, Bing or Yahoo!. For that reason,

unfortunately, those commercial web search engines are kept secret from curious

developers like us. Therefore, our first purpose for our final project is to download the

Nutch source code, install it, configure it and run it on local machine with Hbase at

the first phase in order to fully understand how it works and what components or

modules it has as the way we take to seek a deep understanding of what we learn from

the course of Big Data Analytics. Based on our knowledge of Nutch Search engine,

we will improve existing modules or develop new features for it as our second phase

or future plan. We hope we could develop a new version or our own version of search

engine based on Nutch to deploy it as commercial web search engine.

1. Introduction and Background:

 Internet is our everyday source for all kinds of information, like news, broadcast,

music, pictures, or even movies. We are immersed in the flood of big data every day.

However, the information we need is only a small portion of it and for different

individuals the importance of information is hardly the same. A search engine will

make it convenient for us to absorb information efficiently. The search engine will do

MapReduce for us humans to get the related and useful pages.

 A Search engine consists of several parts: A web crawler, a web indexer, and a web

searcher. Nutch is an open-source web crawler software project, which is highly

extensible and scalable. It provides useful open source code for building a search

engine.

 The project aims at deploying Nutch on a commodity cluster provided by IBM and

using hadoop to perform distributed computing on the web-crawling, indexing and

2

searching. But instead of using Nutch’s default database, we are planning on using

HBase to store the crawled data, process and transform the data that has been read

into the HBase.

The canonical HBase use case is webtable, used for a search engine. HBase is a

distributed column-oriented storage system or database for managing structured data;

it is built on top of HDFS. It is an application appropriate for real-time read/write

random access to very large datasets: petabytes of data across thousands of

commodity servers. HBase is not relational and does not support SQL or any full

relational data model. Given proper problem space, however, HBase can do what an

RDBMS cannot do: host very large, sparsely populated tables on clusters made from

commodity hardware. It provides clients with a simple data model that supports

dynamic control over data layout and format, and allows clients to reason about the

locality properties of the data represented in the underlying storage.

 By using the technology described above, we are able to build a search engine of

our own. It is based on Nutch, whose injector is re-written or modified so that the

HBase could be used as the database to store crawled data. Web searcher and

web-interface is supported by Nutch as well, so that we can search text from a web

interface.

2. Objectives:

We are using Nutch - an open-source effort to build a web search engine, as our

web crawler to download the data from the internet, and we are using HBase to store

the database, and perform MapReduce on the database, and we are going to build a

simple web interface as front-end layer for users to search text. The project deploys

Nutch on a commodity cluster provided by IBM and uses hadoop to perform

distributed computing on the web-crawling, indexing and searching. Our search

engine will be a focused search engine, which searches for a specific field of interest,

e.g., books, film reviews, or soccer game results.

 We are absorbing film information from the website IDMB (www.idmb.com), and

store the data as our database, in order to meet the need of the users who search for a

film review.

Also, we crawled IGN (www.ign.com) for game reviews. And we test the searching

engine by searching key words from the games.

Other websites, like the rotten tomatoes, and the matecritic.com, are then crawled

in order to incorporate and versatile our database.

3. System Requirements and Use Cases:

3.1 Tools:

3.1.1 Server

3

 IBM cloud server (clusters we created) in Canada

 OS: Red Hat Enterprise Linux v6. Copper - 64 bit (vCPU: 2, RAM: 4 GiB,

Disk: 60 GiB)

 OR

 lewis, a cluster of multi-core compute servers operated by University of

Missouri Bioinformatics Consortium.

 OS: Platform OCS Linux 4.1.1 (based on Redhat Linux).

 3.1.2 Programming Tools

 HBase, Eclipse

 3.1.3 Software/platform

 Nutch, BigInSights

3.2 Why we chose BigInsights:

A search engine usually requires large space for storing data, as the tables will be

very large. HBase is highly scalable and is quite fit for the database. The IBM cloud

cluster provides up to ten nodes for us to use, and the disk for each node is extensible.

So we choose IBM academic skills cloud as our server as it provides abundant space.

Besides, InfoSphere BigInsights platform including Hadoop and HBase is

pre-installed on every node, which is quite convenient for us to use.

3.3 Why we chose Nutch:

 Building a web search engine from scratch is not eligible for us, for not only is the

software required to crawl and index websites complex to write, but it is also a

challenge to run in distribution on Hadoop. Since Hadoop has its origins in Apache

Nutch, running it with Hadoop will not be a problem. Besides, many parts of the

software that are not related to distributed computing and this course are already

written and documented. We can easily read the documentations and deploy it. And

once we do, we can then focus on the data storage and data analysis part. Storage is

provided by HDFS and analysis by Mapreduce.

3.4 Why we chose HBase as the database:

HBase is a distributed column-oriented storage system or database for managing

structured data; it is built on top of HDFS. It is an application appropriate for

real-time read/write random access to very large datasets. HBase can do what an

RDBMS cannot do: host very large, sparsely populated tables on clusters made from

commodity hardware. It provides clients with a simple data model that supports

dynamic control over data layout and format, and allows clients to reason about the

locality properties of the data represented in the underlying storage. Since the

webpages to be crawled can be considered huge dataset, and the tables should be

easily extensible, HBase well fits this demand.

4

Fig. 3.1 HBase Storage structure. Column Oriented.

3.5 Description of input data, input format:

 The input data comes from the websites listed previously. The whole websites are

crawled as the input data. Then the data from the websites are stored in the HBase in a

specific fashion, which is designed to fetch film reviews or game reviews more easily.

The collection of this intermediate data forms our database, from where we do the

searching to test. Once a key word is typed in the web interface search engine, the

searcher and indexer will search and query the webpage that we are looking for. The

listed pages can be considered the final output. And we check if the search result is

satisfactory.

4. Design and Methodology:

Fig. 4.1. Structure Overview.

As shown in Fig. 4.1 is the overview of the distribution of machines and their

jobs.

The methodology is, deploying both Nutch and Hadoop on the cloud, which is

consisted of one master node and five slave nodes. The architecture is designed in

such a way in order to make the most of commodity hardware. The master node takes

5

the responsibility of storing metadata and assigning data nodes tasks. The data nodes

stores the data crawled from the Internet.

The web crawler crawls the web pages specified by the user. It is a program

which browses the web in a methodical and automated manner. And it not only keeps

a copy of all the visited pages for later processing but also indexes these pages to

make the search narrower. Its process includes locating, fetching, and storing pages on

the web.

The web indexer does the job of indexing to make the search narrower. An

inverted index is a representation for the document collection over which user queries

will be evaluated. The pages with higher query scores will be listed above in the

search result.

The Web searcher deals query processing. When a user searches something, the

searcher will query pages that contain key words that are being searched.

 BigTable will store the initial web pages crawled. Then through Mapreduce, the

same pages will be filtered.

Fig. 4.2. MapReduce on the initial web pages.

Fig. 4.3 Main components of a search engine: 1) crawler; 2) indexer; 3) query processing.

There are some advantages of distributed web crawling: (1). Higher crawling

throughput with lower latency; (2). Improved network politeness with less overhead

on routers; (3). Better coupling with distributed indexing/search.

6

Fig. 4.4. Architecture of Nutch.

5. Implementation and Execution Results:

5.1 Implementation:

As we mentioned in the previous sections, a search engine consists of three

components including crawler which is in charge of downloading web pages and store

them into Hbase tables, indexer which is responsible for creating inverted index files

or producing words in web pages as keys in Hbase tables, and searcher or querier

which is in charge of querying data from Hbase tables.

 For this project, we will use MapReduce in Hadoop to write Map and Reduce

function for storing urls read for seed.txt file into Hbase tables as an example for

getting to know how Nutch works.

For Injector module, we have two main classes as following:

5.1.1 Class UrlMapper is responsible for storing url data into Hbase tables

/**

* Map web pages information including urls, web content, length, ... into Hbase tables

*/

public static class UrlMapper extends Mapper<LongWritable, Text, String, WebPage> {

 private URLNormalizers urlNormalizers;

 private int interval;

 private float scoreInjected;

 private URLFilters filters;

 private ScoringFilters scfilters;

 private long curTime;

7

 @Override

 protected void setup(Context context) throws IOException, InterruptedException {

 }

 protected void map(LongWritable key, Text value, Context context)

 throws IOException, InterruptedException {};

}

5.1.2 Class InjectorJob is responsible for getting urls from seed.txt file, and then uses

UrlMapper class to store that data into Hbase tables.

public class InjectorJob extends NutchTool implements Tool {

 /**

 * Map information relating to web pages downloaded from the Internet into Hbase tables

 */

 protected void map(LongWritable key, Text value, Context context)

 throws IOException, InterruptedException {};

 /**

 * Default constructor function

 */

 public InjectorJob() {};

 /**

 * Constructor function with configuration information

 */

 public InjectorJob(Configuration conf) {};

 /**

 * Map function to do injection job

 */

 public Map<String,Object> run(Map<String,Object> args) throws Exception {};

 /**

 * Do downloading web pages from input list of urls and inserting them into Hbase tables

 */

 public void inject(Path urlDir) throws Exception {};

 /**

 * Run module Injector

 * This function overrides run function in the NutchTool class

 */

8

 @Override

 public int run(String[] args) throws Exception {};

 /**

 * Main entry to run Injector to download web pages and inject them into Hbase tables

 */

 public static void main(String[] args) throws Exception {

 int res = ToolRunner.run(NutchConfiguration.create(), new InjectorJob(), args);

 System.exit(res);

 }

}

5.2 Execution Results:

 seed.txt file is stored in /home/user/urls folder, and the file has 17 urls as

following pictures:

Fig. 5.2. Seed.txt that contains the URLs of websites to be crawled.

9

Fig. 5.3. URLs where websites are represented will be crawled.

After executing Injector module, we got the result as following:

Fig. 5.4. Injector result.

10

6. Testing and Validation:

 To test InjectorJob module, we will input a list of urls into seed.txt as previous

section. Subsequently, we will execute the module from Eclipse to get the result. To

verify whether or not the module insert the list of urls into Hbase table correctly, we

will use Hbase Shell to test it as following.

Fig. 6.1 Describe the “webpage” table, to check the data structure with which data is stored in HBase.

Fig. 6.2. Scan to display data of all columns. (a)

11

Fig. 6.2. Scan to display data of all columns (b)

Fig. 6.2. Scan to display data of all columns. (c)

12

Fig. 6.2 Scan to display data of all columns. (d)

After using Hbase Shell to query the content of an Hbase table webpage, the result

meets with our expectation.

7. Problems and solutions:

7.1. Problems

 Nutch is able to run on two modes including local and distributed mode as

Hadoop does. The local mode is mainly for testing and development purpose. On the

other hand, distributed mode is for executing or deploying the web search engine on a

cluster of machines, so that users can do searching, which is served by the Nutch

Search Engine.

 To run Nutch in local mode, we use Nutch 2.2.1 – the newest and stable version

of Nutch web search engine which also supports Hbase as a Database system for

storing big data crawled from the Internet. Nutch 1.7 is also a stable version for users

to work on, however, it does not support Hbase. Thus, Nutch 1.7 is not a choice for us.

On the other hand, Nutch 2.2.1 supports Hbase 0.90.4, which allows us to store huge

amount of crawled data into Hbase based big tables. In order to run Nutch 2.2.1 on a

local machine for debug purpose, we need first to install, configure and run Hadoop

on that machine. For our final project we chose Hadoop 1.2.1. At the first time, we

installed Hbase-0.94.13 on our local machine along with Hadoop 1.2.1 for running

Nutch 2.2.1 on. Subsequently, we built the Nutch 2.2.1 source code downloaded with

ant, and has been using Eclipse Indigo 3.7.2 to import the code for further

development. However, when we first executed Injector module of Nutch search

engine we got an error which says “InjectorJob: org.apache.gora.util.GoraException:

java.lang.RuntimeException: java.lang.IllegalArgumentException: Not a host:port

13

pair...”. As far as we know, Nutch Search Engine uses storage backend Gora to set

option for database such as Hbase.

 To run Nutch in the distributed mode on a cluster of machines, we use IBM cloud

which was provided from the course. We created one Master node and 5 slave nodes

for deploying Nutch 2.2.1. On IBM cloud, Master and slave nodes support Hadoop

1.0.3, and on the Master node, Hbase verison 0.94.0-security is supported. In addition,

zookeeper-3.4.3 is also installed along with Hadoop 1.0.3.

 Having Nutch 2.2.1 configured and built on Master node by using apache-ant, we

execute Nutch 2.2.1 by running a command - “bin/nutch inject

hdfs://170.224.194.42:9000/user/idcuser/urls”. However, we got the same error,

“InjectorJob: org.apache.gora.util.GoraException: java.lang.RuntimeException:

java.lang.IllegalArgumentException: Not a host:port pair...”.

7.2. Solutions

 To solve the problem happened on the local machine, all we have to do is reinstall

Hbase0.94.0, and instead, we changed to version 0.90.4 of Hbase to match with

version of Hbase which is supported in Nutch. After reinstalling Hbase0.94.0, we ran

Nutch 2.2.1 by using Eclipse, and it works just fine.

 For the problem on IBM cloud, it turned out that it is not as easy as we used to

assume it might be. We were trying several options to work the problem out. The first

one is we decided to download Hbase0.90.4, and modify HBASE_HOME on the

Master in order to run Hbase0.90.4 instead of Hbase0.94.0. However, it did not work

out. Thus, we tried another option by copying Hbase0.90.4.jar file into default

HBASE_HOME of the Master node, and ran it again. Nevertheless, we faced the

same error. Then we sought the last resort by deleting all files in the default

HBASE_HOME on the Master node, and moved all files of Hbase0.90.4 to the same

location of Hbase0.94.0. We kept the same configuration files as they were in

Hbase0.94.0. We still have the same error when we run the Nutch 2.2.1. We know

Hbase is built on the top of Hadoop and it communicates with Zookeeper for

managing and operating distributed files on HDFS.

 So we draw a conclusion that to run Nutch 2.2.1 on a cluster of machines. We

need to setup our own cluster with Hbase0.90.4 running on it. Or another option, we

would run Nutch on other public cloud to see what is going on.

 For that reason, with time limitation in this project, we just top at running Nutch

2.2.1 on local machine and try to understand its features or the way it gains, stores and

processes big data.

14

8. Conclusions:

We find out that the engine works well as a focused search engine, which can

search information of a specific interest. This provides related and useful information

for users, helps people absorb information more efficiently.

Future work can be done to add advanced search mode. Where we can search based

on some logic, e.g., search results must include some key words, and may include

some other key words, or must not include some key words. In addition, the search

engine may search filter certain pages for censorship. Or search films whose average

review score is above a certain value.

9. References:

[1] http://nutch.apache.org/

[2] http://wiki.apache.org/nutch/NutchHadoopTutorial

[3] http://www.google.com/intl/en_us/insidesearch/howsearchworks/crawling-indexing.html

[4] http://hbase.apache.org/

[5] http://learnhbase.wordpress.com/2013/03/02/hbase-shell-commands/

[6] http://wiki.apache.org/nutch/RunNutchInEclipse

[7] http://wiki.apache.org/nutch/NutchTutorial#A3.3._Using_the_crawl_script

[8] Mike Cafarella and Doung Cutting, "Building Nutch: Open Source Search," ACM

Queue, April 2004.

[9] “Modern Information Retrieval”, R. Baeza-Yates & B. Ribeiro-Neto,

Addison-Wesley, 1999.

[10] “Managing Gigabytes: Compressing and Indexing Documentsand Images”, I.H.

Witten, A. Moffat, and T.C. Bell .Morgan Kaufmann, San Francisco, second

edition, 1999.

[11] “Modeling the Internet and the Web: Probabilistic Methods and Algorithms”,

Pierre Baldi, Paolo Frasconi, and Padhraic Smyth, John Wiley & Sons; May 28,

2003.

[12] “Mining the Web: Analysis of Hypertext and Semi Structured Data”, Soumen

Chakrabarti, Morgan Kaufmann, 2002

http://nutch.apache.org/
http://wiki.apache.org/nutch/NutchHadoopTutorial
http://www.google.com/intl/en_us/insidesearch/howsearchworks/crawling-indexing.html
http://hbase.apache.org/
http://learnhbase.wordpress.com/2013/03/02/hbase-shell-commands/
http://wiki.apache.org/nutch/RunNutchInEclipse
http://wiki.apache.org/nutch/NutchTutorial#A3.3._Using_the_crawl_script

15

Appendix List

A file list, together with all programs, scripts, and configuration files.

A user manual.

10. User Manual.

 Before installing and running Nutch 2.2.1, we need to make sure the following

prerequisite should be met.

10.1. Prerequisites

1. Installing, configuring and running successfully Hadoop on your

machine. We use Hadoop 1.2.1, a new and stable version of Hadoop.

We are able to download it from http://hadoop.apache.org.

2. Make sure you install and run successfully Hbase verison 0.90.4 on

your machine because Nutch 2.2.1 works fine just with this version of

Hbase. You can download Hbase0.90.4 from http://hbase.apache.org/.

3. Install apache-ant to build java project. You can download ant from

http://ant.apache.org . We use Apache-ant version 1.8.2 to build Nutch

project.

4. Install Eclipse to import Nutch source code to develop the Search

Engine. For this project, we use Eclipse Indigo 3.7.2. You are also

required to install IvyDE plugin (you can download it here

http://ant.apache.org/ivy/ivyde/download.cgi) and m2n plugin (you

can download it here

http://marketplace.eclipse.org/content/maven-integration-eclipse) for

Eclipse.

5. Install svn subversion plugin for Eclipse or standalone subversion on

your local machine, then it allows you to check out source code and

check in, update source directly from your local machine to the Nutch

respository.

10.2. Checkout and Build Nutch

1. Get the latest source code from SVN using terminal. For Nutch 1.x (ie.trunk)

run this:

 svn co https://svn.apache.org/repos/asf/nutch/branches/2.x

 cd 2.x

2. At this point you should have decided which data store you want to use. See

the Apache Gora documentation to get more information about it. Here are

few of the available options of storage classes:

 org.apache.gora.hbase.store.HBaseStore

http://hadoop.apache.org/
http://hbase.apache.org/
http://ant.apache.org/
http://ant.apache.org/ivy/ivyde/download.cgi
http://marketplace.eclipse.org/content/maven-integration-eclipse
http://gora.apache.org/

16

 org.apache.gora.cassandra.store.CassandraStore

 org.apache.gora.accumulo.store.AccumuloStore

 org.apache.gora.avro.store.AvroStore

 org.apache.gora.avro.store.DataFileAvroStore

In “conf/nutch-site.xml” add the storage class name. eg. Say, you pick HBase

as datastore, add this to “conf/nutch-site.xml”:

 <property>

 <name>storage.data.store.class</name>

 <value>org.apache.gora.hbase.store.HBaseStore</value>

 <description>Default class for storing data</description>

 </property>

3. In ivy/ivy.xml: Uncomment the dependency for the data store that you selected.

eg. If you plan to use HBase, uncomment this line:

 <dependency org="org.apache.gora" name="gora-hbase" rev="0.3"

conf="*->default" />

4. Set the default datastore in conf/gora.properties. eg. For HBase as datastore,

put this in conf/gora.properties:

 gora.datastore.default=org.apache.gora.hbase.store.HBaseStore

5. Add “http.agent.name” and “http.robots.agents” with appropiate values in

“conf/nutch-site.xml”. See conf/nutch-default.xml for the description of these

properties. Also, add “plugin.folders” and set it to

{PATH_TO_NUTCH_CHECKOUT}/build/plugins. eg. If Nutch is present at

"/home/user/Desktop/2.x", set the property to:

 <property>

 <name>plugin.folders</name>

 <value>/home/user/Desktop/2.x/build/plugins</value>

 </property>

6. Run this command:

 ant eclipse

10.3. Load project in Eclipse

1. In Eclipse, click on “File” -> “Import...”

2. Select “Existing Projects into Workspace”

17

3. In the next window, set the root directory to the location where you took the

checkout of nutch 2.x. Click “Finish”.

4. You will now see a new project named 2.x being added in the workspace. Wait

for a moment until Eclipse refreshes its SVN cache and builds its workspace.

You can see the status at the bottom right corner of Eclipse.

18

5. In Package Explorer, right click on the project “2.x”, select “Build Path” ->

“Configure Build Path”

6. In the “Order and Export” tab, scroll down and select “2.x/conf” (or

trunk/conf). Click on “Top” button. Sadly, Eclipse will again build the

workspace but this time it won’t take much.

19

10.4. Create Eclipse launcher

Now, let’s get geared to run something. Let’s start off with the inject operation. Right

click on the project in “Package Explorer” -> select “Run As” -> select “Run

Configurations”. Create a new configuration. Name it as "inject".

 Set the main class as: org.apache.nutch.crawl.InjectorJob, this class we just

updated from the last sector.

In the arguments tab, for program arguments, provide the path of the input directory

which has seed urls. Set VM Arguments to “-Dhadoop.log.dir=logs

-Dhadoop.log.file=hadoop.log”

20

Click "Apply" and then click "Run". If everything was set perfectly, then you should

see inject operation progressing on console.

file:/home/user/urls

file:///C:/Users/ngh/Desktop/urls

21

11. File List:

Nutch includes a lot of files, and the same with Hadoop. Therefore, only typical files

that are related to this subject are listed here.

Crawler.java

InjectorJob.java

URLFilter.java

URLFilters.java

Crawl-tests.xml

Hbase-site.xml

Nutch-default.xml

Nutch-site.xml

……

The apache-nutch-2.2.1-src is attached in order for verification. Please follow the

manual guide described above. Other pre-requirements like Hadoop and Eclipse may

be needed, which in case you don’t have, download links are provided in the manual.

