
Wifi based Multiplayer Game  
Guanghan Ning , Lingshuang Wu, Yi Shang 

Computer Science, University of Missouri-Columbia 
gnxr9@mail.missouri.edu 
Lw2mf@mail.missouri.edu 

shangy@missouri.edu 
 

 
Abstract—As the smart phones running Android OS become more 

and more popular, the limitation of the network connection comes 
out to be a problem. With the idea of adhoc network, we decided to 
develop a multiplayer game Aero Plane Chess based on wifi to test 
the performance of the wifi network. The game is implemented by two 
part: the game part and the wifi network part. For the game part, we 
implemented a turn based game which allows users to roll the dice 
and choose one of four planes of his to play. Besides, we implement 
some rules such as jumping and killing others; for the wifi network 
part, we used centralized mode which makes synchronization simple. 
Besides, TCP was utilized on top of wifi. According to the game 
performance, we found that wifi has high speed to support phones’ 
communication and adhoc network could support  multiplayer 
applications. 

Index Terms—multiplayer, game, wifi, adhoc network, android 

1.  INTRODUCTION 
With the blooming popularity in mobile market, smart 

phone dramatically change people’s life style. The 
combination of portable device and powerful server services 
enable smart phone perform a variety of tasks. Though the 
cloud and client approach is widely applied, such services are 
limited by network connection. Despite the fact that Ad-hoc 
network through wifi and bluetooth is supported by the 
Android lower level system, smart phone’s capabilities of 
setting up ad-hoc network that allows peer communication are 
not utilized. 

Previous REU students have developed a game based on 
Blue tooth. However, it is limited to two players and Blue 
tooth has low speed. So, we would implement a wifi based 
multiplayer game – Aero Plane Chess – which has high speed 
communication.  

2.  GAME RULES 
Basically, this is a turn based multiplayer game. 

2.1.  Basic rules 
There are four different colors on the map as shown in Fig 

1. and one player represents one color. Each player controls 
four planes with the same color as his. The goal is to have all 
four planes reach the destination. Each player has a turn to roll 
the dice and choose one of his four planes to move. 

2.2. Specific rules 
The player can only roll the dice and choose a plane in his 

turn. In his turn, the player can only roll dice when it is in Roll 
dice mode and the player can only choose a plane when it is in 
Choose plane mode. 

2.3. Advanced rules 
At the plane’s first stop, it will check the color of the block, 

if the block’s color is the same as the plane’s color, the plane 
will move forward to next block which has this color; If two 
or more planes with different 
colors arrive at the same block, the  
previous ones will be sent to home(More specific rule: if this 
happens at the plane’s first stop where it is supposed to “fly”, 
it won’t “fly” any more) 

 

 
 

Fig. 1.  Game map 

3. GAME DESIGN 
For the whole game, we have three cycles working together. 

They are game life cycle, plane life cycle, and dice life cycle. 

3.1.  Game life cycle 
As shown in Fig 2, for the whole game loop, we have 

designed three statuses which include Roll Dice, Choose 
Plane, and Start Moving. When the game is started, the status 
is Roll Dice. At this point, the game will wait for the user to 
roll the dice. Whenever the game captures the event that the 
right user has clicked on the dice, it changes the status to 



Choose Plane and wait for the user to click on one plane. As 
long as the user clicks on a legal plane, the game status will 
change to Start Moving which means the chosen plane is 
moving now. Whenever the running plane finishes its turn, the 
game status will change back to Roll Dice and wait for next 
user to click on the dice. The loop keeps working until the 
game is over. 

 
Fig. 2.  Game life cycle 

 

3.2.  Plane life cycle 
As shown in Fig 3, for each individual plane, it has three 

statuses which are Start Moving, First Stop, and Finish Turn. 
When the plane is not activated, the status is Finish Turn. 
When it receives the event message saying that game status 
changes to Start Moving, it will change the plane status from 
Finish Turn to Start Moving, and at the meantime, the plane 
starts moving on the map. Whenever the plane stops in this 
situation, it changes the status to First Stop and at this point, 
the plane checks if others with different color from its are on 
the block it steps on. If some are, it kills them ( send those 
planes back to home ). Besides checking planes, it also checks 
the color of the block. If the color of the block is the same as 
its color, it will move forward to the next block which has the 
same color as its. If at the first stop, the plane cannot move 
forward, it will change the status to Finish Turn itself. 
Otherwise, it will keep moving until it stops again and 
changes the status to Finish Turn. When the status is at Finish 
Turn, the plane will check other planes’ locations and the 
color of the block again and deal with those situations. 

. 

 
Fig. 3.  Plane life cycle 

3.3. Dice life cycle 
     As shown in Fig 4, for the dice, it has three statuses which 
are Display “?” picture, Display randomly, and Display the 
player’s dice number. As the name indicates, the first status 
will display a question mark on the screen, the second status 
will display ten random number one by one as if the dice is 
rolling, and the third status will display the number generated 
by the user as the moving steps for the plane. At the very 
beginning of the game, the status is at Display “?” picture. 
When the user clicks on the dice, it generates a random 
number and turns the status from Display ”?” picture to 
Display randomly. Then it will display ten random dice 
pictures. After that, the status changes to Display the player’s 
dice number. Whenever the running plane finishes its turn, the 
status will change back to Display “?” picture again. This 
process will keep working until the game is over. 

 
Fig. 4.  Dice life cycle 

 

4.  WIFI DESIGN 
Basically the wifi can be implemented in centralized mode 

or distributed mode. We will compare these two modes here. 

4.1. Centralized mode 
In the centralized mode, the first player is supposed to be a 

sever setting up the wifi network. Other phones will join the 
network by setting up the connection between itself and the 
sever, which means they turn out to be clients. When it is the 
sever player’s turn, it will send all the necessary data to clients. 
When it is the client player’s turn, it will send all the 
necessary data to the sever first and the sever will send the 
data to other clients.  

As it is shown in Fig 5, the sever is the centre of  the whole 
wifi network controlling the communications between each 
clients. 

Roll	
  Dice	
  

Choose	
  
Plane	
  

Start	
  
Moving	
  

Start	
  
Moving	
  

First	
  Stop	
  Finish	
  Turn	
  

Display	
  “?”	
  picture	
  

Display	
  randomly	
  
Display	
  the	
  
player’s	
  dice	
  
number	
  



 
 

Fig. 5.  Centralized mode 

4.2. Distributed mode 
Unlike the centralized mode, in the distributed mode, each 

player is supposed to be a sever as well as a client. When it is 
a player’s turn, this phone will perform as a sever sending all 
the necessary data to other phones. When it is other phones’ 
turns, this phone will perform as a client receiving message 
from others. By this way, all the phones are connect equally. 

    As it is shown in Fig 6, there is no centre in the whole 
wifi network. All the phones are equally connected. 

 
Fig. 6.  Distributed mode 

4.3. Comparison of centralized and distributed mode 
Centralized mode is easy to be implemented and 

synchronization is good. In the centralized mode, the 
minimum connections between four phones can be three 
which is simple to work on. Besides, only one sever to 
manage communication makes synchronization good. 

However, the disadvantage is that in the whole network, all 
the phones are not completely equal which is a little against to 
the idea of adhoc network. 

The distributed mode overcomes this shortcoming, which 
has every phone equally exist in the network. But it needs 
more connections between phones. Besides, since each phone 
will send data to other phones independently, the 
synchronization is difficult to manage. 

Comparing the advantages and disadvantages of these two 
wifi modes, finally we choose to use centralized mode to 
implement the network. 

 4.4. TCP implementation 
Based on wifi API, we use TCP to implement data 

communication. TCP, as a mature way in network connection, 
is easy to be implemented in Java and has low rate to lose data. 

4.5. Data communication 
The data communication is very simple in this game. Only 

user ID, running plane number, and dice number are supposed 
to send to other phones to finish one turn.  

After one player generates his dice number and chooses his 
running plane, the phone sends user ID, dice number, and 
running plane number to sever, and sever will send the 
message to all clients. 

No matter client or sever, there is always a thread trying to 
receive message. Once it receives not null message, it will 
store them for further use.  

5. EXPERIMENTAL RESULTS AND ANALYSIS 
Based on all the theories above, we implemented a 2 player 

Aero Plane Chess on wifi adhoc network. The performance 
shows that there is almost no latency in the communication. 
As long as one phone sends all the necessary data to the other 
one, the other phone does correct actions immediately. 

6.  CONCLUSION 
According to the game performance, we found that 

multiplayer game can be implemented based on wifi network 
on Android phones and TCP works very well on adhoc 
network as well. The wifi speed is high enough to support 
general turn based games. 

7. WHAT WE LEARNED 
Throughout this small project, we learned the basic 

techniques to design and implement a game on Android OS. 
Besides, this learning experience enhanced our understanding 
of algorithms behind adhoc network. This project has also 
cultivated our research spirits in exploring unknown world 
with limited knowledge and time constriait. 

8. FUTURE WORK 
Building up on our current implementation, we would like 

to improve the game interface. Besides, we also want to 
implement some other specific game rules and expand the 
game to 3+ players. Distributed connection mode is also a 
valuable way to work on. 

Sever	
  

Client	
  

Client	
  Client	
  



REFERENCES 
[1] Zechner, Mario.  Beginning Android Games, pp.  185-227.  Springer 

Science+Business Media.  2011: New York. 
[2] “Sockets programming in Java” , 1996 

http://www.javaworld.com/javaworld/jw-12-1996/jw-12-sockets.html 
[3] Tiancheng, Zhuang. “Wifi single hop networking java library 

documentation”, unpublished. 
[4] “Android Game programming”  

http://www.edu4java.com/androidgame/androidgame.html 
 

 
 


