

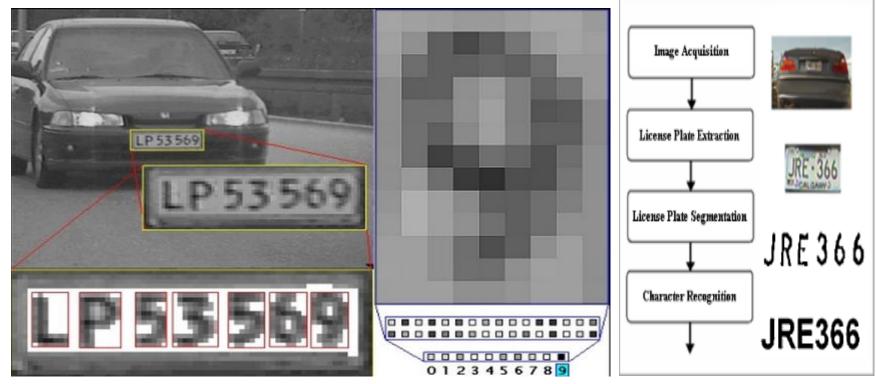
THESIS TITLE:

VEHICLE LICENSE PLATE DETECTION AND RECOGNITION

Committee Members: He, Zhihai Tony, Han Duan, Ye

Defence: Ning, Guanghan

E-mail: gnxr9@mail.missouri.edu Cell-phone: (573)825-8230


OVERVIEW OR COLUMN:

- * 1. License Plate Detection and Recognition: What and Why
- ✤ 2. Dataset
- ✤ 3. Challenges
- ✤ 4. Previous Related Work
- * 5. Proposed Method
- 6. The Contribution
- 7. Demo

1. PROBLEM: LICENSE PLATE DETECTION AND RECOGNITION

ALPR SYSTEM: SEVERAL STAGES

1. PROBLEM: LICENSE PLATE DETECTION AND RECOGNITION

- APPLICATIONS1. Automatic toll collection
 - 2. Traffic law enforcement
 - 3. Parking lot access control
 - 4. Road traffic monitoring

Video Processing and Communication Lab

6:02 PM

 $6:02 \ \mathrm{PM}$

2. DATASET

• Images

1600*1200

1920*1104

All resize to 909*523 Video Processing and Communication Lab

3.CHALLENGES (1) PLATE VARIATION

- 1. location
- 2.quantity
- o 3. size
- 4.color
- o 5.font
- 6.standard versus vanity
- 7.occlusion
- 8.inclination
- 9.plates contain frames and screws

3.CHALLENGES (1) PLATE VARIATION

NØ 1278

คย 1750

Center Line

97-816

+ THAILAND -01

e Font B/W

กฉ 198

Long Plate

- 1. location
- 2.quantity
- 0 3. size
- 4.color
- o 5.font
- 6.standard versus vanity
- 7.occlusion
- o 8.inclination
- o 9.plates contain frames and screws

N-5022

One Letter Front

Three Number Rear

Two Number Rear

500

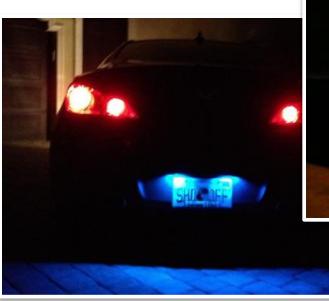
168

63

30

29V-6959

80-NG-416

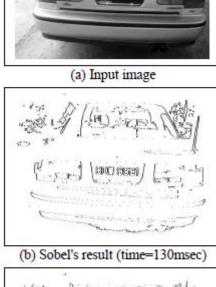

Vietnam License Plate

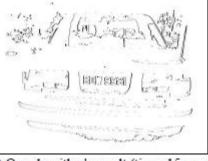
A-00323

6:02 PM

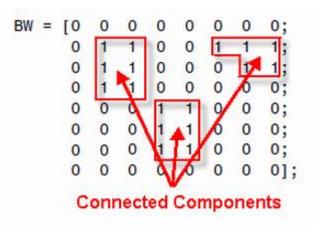
3.CHALLENGES (2) ENVIRONMENT VARIATION

1. illumination2.background


6:02 PM


4.PREVIOUS REL	ATED WORK
LICENSE PLATE I	EXTRACTION:
1.USING EDGE IN	FORMATION
• 1).Edge Detection	2). Filters
o 3). Transforms	4). Block-based
• Typical method: VE	DA
Create a white blank image as $Img(x,y)$; $//\sum_{x=0}^{hight} \sum_{y=0}^{widh} Img(x, y) = 255$; For every pixel in ULEA image output <i>center=1</i> ; <i>left=1</i> ; <i>right=1</i> ; If(four center mask values = black) <i>center=0</i> ; End if If(two right mask values = black) <i>right=0</i> ; End if If(two left mask values = black)	

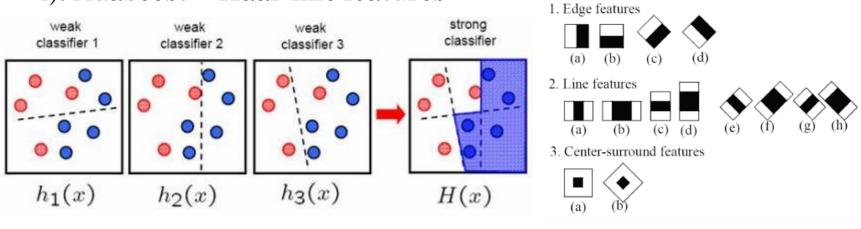
left=0;
End if
If(!center AND !right AND !left) two center column values of Img =white; /*
Img(x,y)=255;
Img(x+1,y)=255;
*/
End if
and for



(c) Our algorithm's result (time=15msec)

4 IPREVIOUS PRATEX WORKTION: 2. USING GLOBAL IMAGE INFORMATION

- 1). Connected Component Analysis
- 2). 2-D cross correlation with pre-stored license plate template

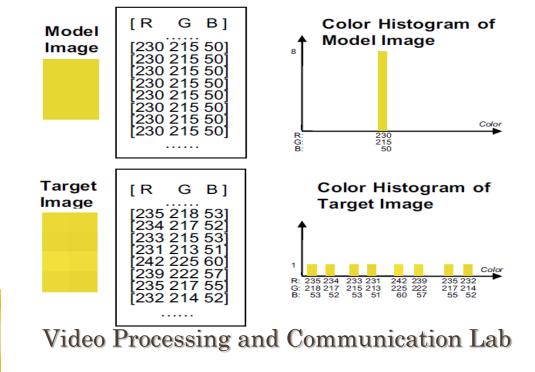

Gallery

Please Enter

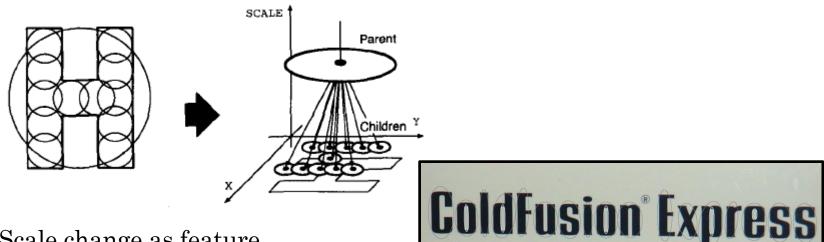
4.PREVIOUS RELATED WORK LICENSE PLATE EXTRACTION: 3.USING TEXTURE FEATURES

- 1). Vector Quantization
- 2). Sliding Concentric Window
- 3). Image Transformations For Textures: DFT, WT
- 4). Adaboost + Haar-like features

Haar features

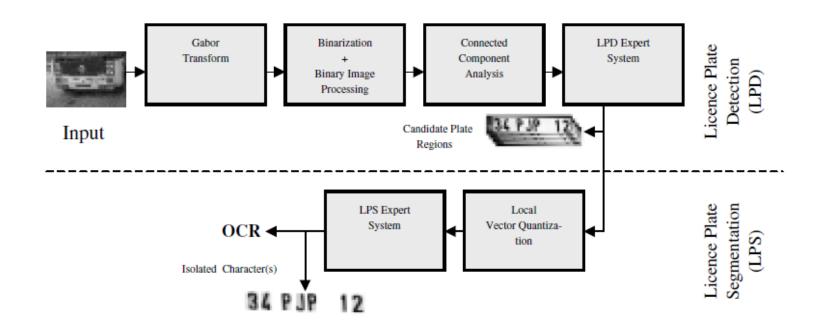


4.PREVIOUS RELATED WORK LICENSE PLATE EXTRACTION:


4.USING COLOR FEATURES

- HLS(HIS), HSV color space(or RGB ...)
- 1). Neural Network to Classify the Color of Each Pixel
- 2). Genetic Algorithm to Search License Plate Color
- 3). <u>Gaussian Weighted Histogram Intersection</u>
- 4). Fuzzy Logic Based(Deal With Illumination Variance)

4. PREVIOUS RELATED WORK LICENSE PLATE EXTRACTION: **5.**USING CHARACTER FEATURES • 1). Repeating contrast changes o 2). Same aspect ratio as characters o 3). SVM-trained SIFT descriptors


• 4). MSER

Scale change as feature

4. PRENIOUS RELEATEN WORKTION: 6. COMBINING TWO OR MORE FEATURES

Video Processing and Communication Lab

14

- **4.PREVIOUS RELATED WORK** LICENSE PLATE SEGMENTATION: 1. USING PIXEL CONNECTIVITY
 - Labeling the connected pixels in the binary license plate image
 - The labeled pixels are analyzed and those which have the same size and aspect ratio of the characters are considered license plate characters.

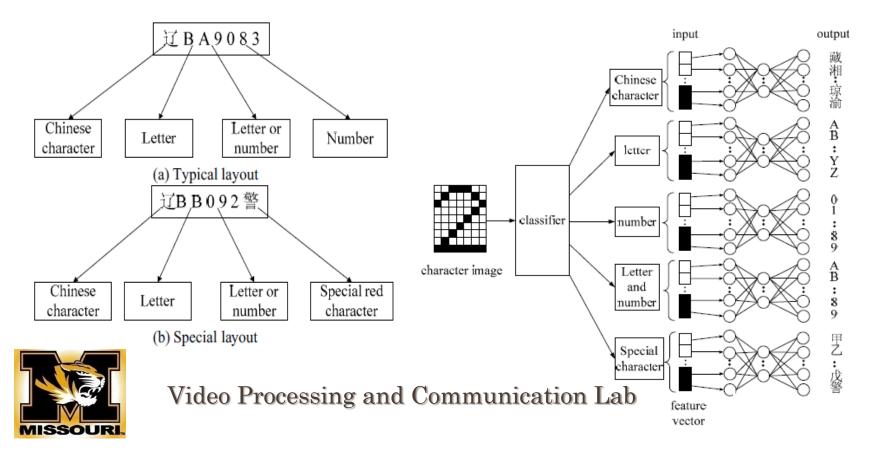
What about joined or broken?

4.PREVIOUS RELATED WORK

LICENSE PLATE SEGMENTATION: 2. USING PROJECTION PROFILES

Color information!

- First, project the binary extracted license plate vertically to determine starting and ending positions of the characters.
- Second, project the extracted characters horizontally to extract each character alone.



6:02 PM

4 PREVISE RELATED WORKATION: 3. USING PRIOR KNOWLEDGE OF CHARACTERS o 1. number of the characters

• 2. colors of the background and characters

4.PREVIOUS RELATED WORK LICENSE PLATE SEGMENTATION: 4. USING CHARACTER CONTOURS

4.PREVIOUS RELATED WORK LICENSE PLATE SEGMENTATION: COMPARISON:

Methods	Pros	Cons	
Using pixel connectivity	Simple and straightforward, robust to the license plate rotation.	Fails to extract all the characters when there are joined or broken characters.	
Using projection profiles	Independent of character positions, be able to deal with some rotation.	Noise affects the projection value, requires prior knowledge of the number of license plate char- acters.	
Using prior knowledge of characters	Simple.	Limited by the prior knowledge, any change may result in errors.	
Using character contours	Can get exact character boundaries.	Slow and may generate incomplete or distorted contour.	
Using combined features	More reliable.	Computationally complex.	

4.PREVIOUS RELATED WORK CHARACTER RECOGNITION: 1.USING RAW DATA

- Template matching
- Normalized cross correlation to match extracted characters with templates
- Store templates of the same character with different inclination angles

Suit for single-font, non-rotated, non-broken, and fixed-size. It is simple but limited.

4.PREVIOUS RELATED WORK CHARACTER RECOGNITION 2.USING EXTRACTED FEATURES

- **o** 1. Raw
- o 2. Ratio
- 3. Symmetry
- 4. Correlagram
- 5. SIFT

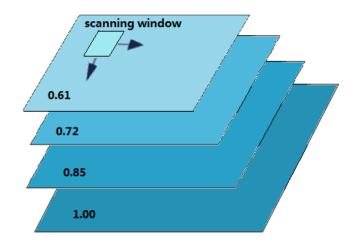
4.PREVIOUS RELATED WORK RESULT COMPARISON OF DIFFERENT METHODS No uniform evaluation way yet.

Methods	Pros	Cons
Using pixel values	Simple and straightforward.	Processing nonimportant pixels and slow, vulnera- ble to any font change, ro- tation, noise and thickness change.
	Be able to recognize tilted characters.	More processing time.
Using extracted features	Be able to extract salient features, robust to any distortion, fast recognition since the number of features is smaller than that of the pixels.	Feature extraction takes time, nonrobust features will degrade the recogni- tion.

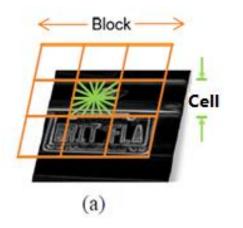
5.PROPOSED METHOD OVERVIEW: WHICH IS MY WORK?

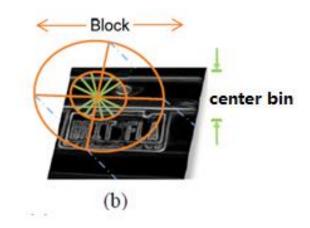
(a) License Plate Detection

(b) License Plate Recognition


Several components:

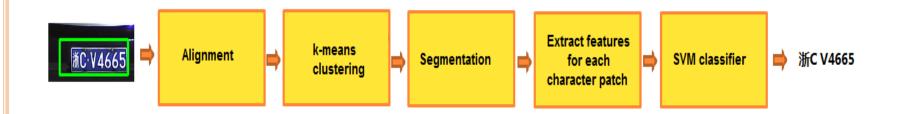
Scanning Window SVM HOG NMS Speed-up



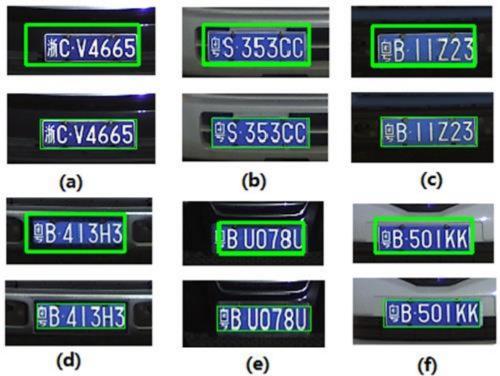

Scanning Window


HOG Features: Types

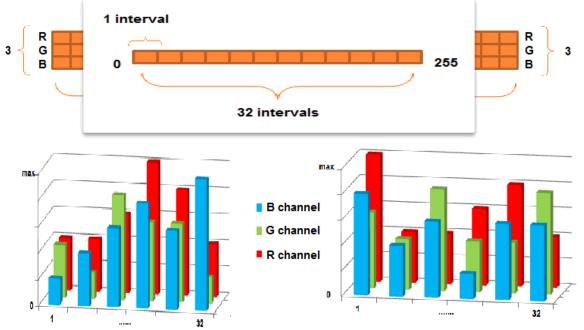
HOG Features: How to extract



• Speed Up Using Edge Information



OVERVIEW

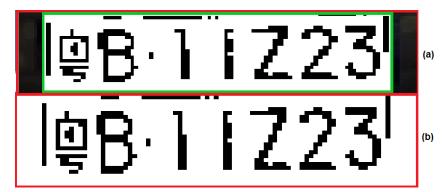


GLOBAL ALIGNMENT: RESULTS

GLOBAL ALIGNMENT: METHOD

BINARIZATION: K-MEANS

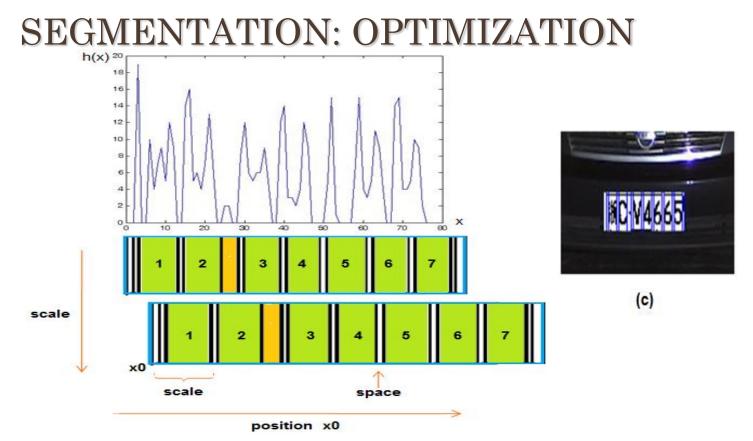
浙C·V4665	₽S-353CC		<mark>@B·413H3</mark>
浙C·V4665	₽S-353CC		<u>@B·413H3</u>
<mark>⊜B U078U</mark>	<mark>®B·501KK</mark>	B UR 1 79	₽B-T002L
⊜B U078U	®B·501KK	B UR 1 79	₽B- T002L
<pre> B EC750 B EC750 B EC750 B</pre>	B 721UT	9B-771CB	<u>\$BF6871</u>
	B 721UT	9B-771CB	\$BF6871
<u>₿B 53270</u>	苏E 2C640	<u>®B NM508</u>	<u>B 64887</u>
<u>₿B 53270</u>	苏E 2C640	®B NM508	B 64887



SEGMENTATION: RESULTS



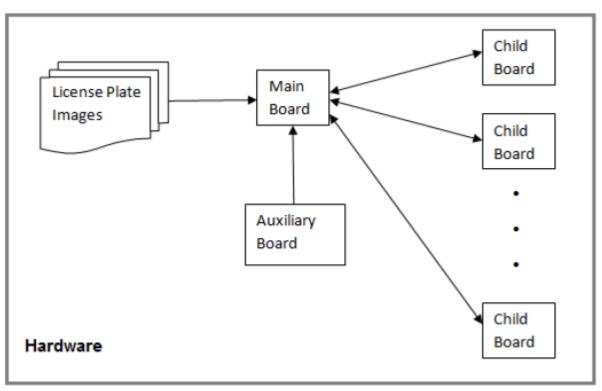
SEGMENTATION: MODEL



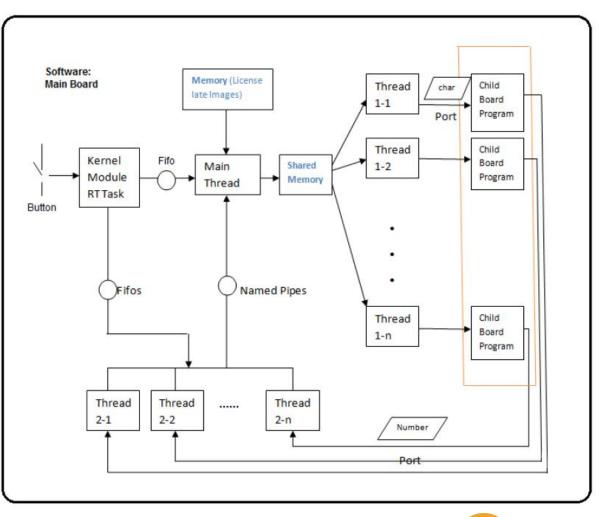
model= (position, width1, width2, scale)

CHARACTER RECOGNITION: FEATURES

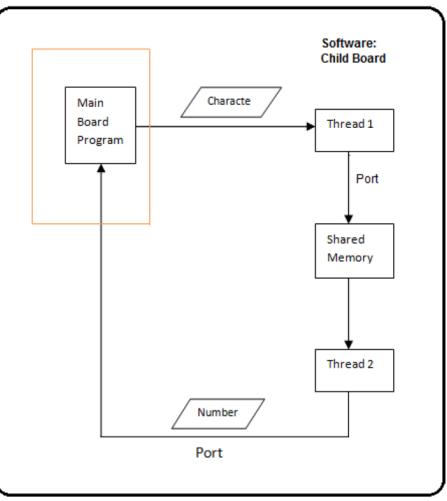
- (1). The histogram of vertical 0-1 inversion pattern.
 16 dimensional
- (2). The histogram of horizontal 0-1 inversion pattern.
 16 dimensional
- (3). The histogram of 0/1 ratio vertically. 16 dimensional
- (4). The histogram of 0/1 ratio horizontally. 16 dimensional
- o (5). The raw feature. 16*32 dimensional


CHARACTER RECOGNITION: RESULTS

5.PROPOSED METHOD EMBEDDED SYSTEM


HARDWARE

5.PROPOSED METHOD EMBEDDED SYSTEM


SOFTWARE: MAIN BOAR

5.PROPOSED METHOD EMBEDDED SYSTEM

SOFTWARE: CHILD BOARD

6. THE CONTRIBUTION LICENSE PLATE DETECTION AND RECOGNITION

- 1. The Global Alignment
- 2. Segmentation Model
- 3. Time saving for sliding window method
- 4. A framework on embedded system which can be used for future generic object recognition or even other applications:
- EDA or GA for deformable model
- Deep learning

7. DEMO LICENSE PLATE DETECTION AND RECOGNITION

- 1. 150~200ms on small stride, 4 scales(night dataset)
- 100~150ms on larger stride
- around 50ms on single scale
- 2. Embedded System

THANK YOU! ABN Bre Bat ШШ MIZZDU UNIVERSITY OF MISSOURI

