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❑ Introduction
❑ Summarize Previous Work

▪ Human Detection and Tracking
▪ Single-person Human Pose Estimation
▪ Human Pose Estimation with Adversarial Training
▪ Multi-person Human Pose Estimation: PoseTrack 

Challenge
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❑ Sports Video Analytics
❑ Video Surveillance
❑ Activity Recognition
❑ Human-Computer Interaction
❑ etc…
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❑ Early Works: Pictorial Structure Models
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❑ Recent Works: Convolutional Neural Networks
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❑ Top-down Approach



Introduction

4/24/2018 10:36 PM8

❑ Convolutional Neural Networks
❑ Generic Object Detection
❑ From Proposal To Regression
❑ Human Pose Estimation
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❑ Convolutional Neural Networks

Motivations
▪ Do not need careful hand-design
▪ Allow a machine to automatically discover the 

representations needed for specific task
▪ Do not need domain expertise
▪ Great feature representation capacity
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❑ Convolutional Neural Networks
Basic Building Blocks

▪ Convolutional Layer
▪ Pooling Layer
▪ Fully-connected Layer

Basic Architecture
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❑ Convolutional Neural Networks

▪ Inference / Forward

▪ Learning / Training
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❑ Generic Object Detection
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❑ Generic Object Detection
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❑ Generic Object Detection
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❑ From Proposal to Regression
▪ Region Proposal   v.s   Unified Network

(Classification v.s   Regression) 
(R-CNN variants  v.s   YOLO/SSD)
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❑ Human Pose Estimation
▪ Naturally a regression problem
▪ Coordinates v.s Heatmaps
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❑Problem Definition

▪ Visual Object Tracking：the process of localizing a 
single target in a video or sequential images, given the 
target position in the first frame.
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❑Significance

▪ It has a wide range of applications such as motion 
analysis, activity recognition, surveillance, and human-
computer interaction.

▪ It can be a prerequisite or a necessary component of 
another system.
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❑ Appearance Variations:
▪ Target deformations
▪ Fast and abrupt motion
▪ Scale changes
▪ Background Clutters

❑2. Occlusion

❑3. Difficulties Introduced by Camera 
▪ Uneven lighting, Illumination
▪ Blur, Low resolution
▪ Perspective distortion
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Figure 1: OTB dataset

OTB is one of the most commonly used datasets. 
Each video is annotated with one or more 
attributes:

• IV: Illumination Variation
• SV: Scale Variation
• OCC:  Occlusion
• DEF: Deformation
• MB: Motion Blur
• FM: Fast Motion
• IPR: In-plane Rotation
• OPR: Out-of-Plane Rotation
• OV: Out-of-View 
• BC: Background Clutters
• LR: Low Resolution
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❑ Evaluation (OPE)
▪ Average Precision
▪ AUC of a Success Plot
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❑ Major Related Works

▪ YOLO
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❑ Major Related Works
▪ LSTM
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❑ Motivation

▪ Existing Tracking Methods do not handle full occlusion 
very well 

▪ Existing Tracking Methods based on CNN is slow. (1~2 
fps)

▪ No RNN-based tracking method on real data had been 
proposed



Human Detection and Tracking

4/24/2018 10:36 PM26

❑ Simplified Overview
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❑ Architecture
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❑ Simple loss Functions
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❑ Qualitative Results for Sequences
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❑ Qualitative Results over time
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❑ Spatio-temporal Robustness against Occlusion
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❑ ROLO is effective due to several reasons:

▪ (1) the representation power of the high-level visual features from convNets, 

▪ (2) the feature interpretation power of LSTM, therefore the ability to detect 
visual objects, 

▪ (3) spatially supervised by a location or heatmap vector, 

▪ (3) the capability of LSTM in regressing effectively with spatio-temporal 
information.
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❑ Performance
• Due to fast motions, occlusions, and 

therefore poor detections, YOLO with 
the kalman filter perform inferiorly 
lacking knowledge of the visual context. 

• LSTM is capable of regressing both visual 
context and location histories, 
performing better than [YOLO + Kalman]

Area Under Curve (AUC) score reflected on right-top. 
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❑ Summary of Contributions

▪Our proposed ROLO method extends the deep neural network 
learning and analysis into the spatiotemporal domain. It is the first 
work that proposes to incorporate CNN and LSTM for object tracking.

▪We have studied LSTM’s interpretation and regression capabilities of 
high-level visual features. 

▪Our proposed tracker is both spatially and temporally deep, and can 
effectively tackle problems of major occlusion and severe motion 
blur.



Chapter. 3
Single-Person Human Pose Estimation



Single-Person Human Pose Estimation

4/24/2018 10:36 PM36

❑ Contents
▪ 0. Problem Definition
▪ 1. Evaluation Criterion
▪ 2. Datasets
▪ 3. Benchmarks
▪ 4. Our Performance 
▪ 5. The Proposed Method

▪ 5.1 Overview
▪ 5.2 Implementation Details 

▪ 6. Qualitative Results
▪ 7. Discussion
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❑ Problem Definition

2D vs 3D
Image vs Video
Single-person vs Multi-Person

Original image
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❑ Evaluation Criterion

(1) PCK Measure: (Percentage of Correct Keypoints)

(2) PCKh Measure
• a specific kind of PCK measure that uses the matching threshold as a 

certain percentage of the head segment length.

(3) AUC (Area Under Curve)
• Draw a curve with different α values, calculate the area under 

curve

http://www.seas.upenn.edu/~bensapp/cvpr13-modec.pdf
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❑ (1) MPII

❑ 25,000 images

❑ 40,000 people with 
annotated joints

❑ 410 human activities

# of joints: 16
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❑ (2) LSP
❑ 1000  training images
And 10000 extended images

❑ 1000  testing images

# of joints: 14
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Related Works

Methods School / Lab Publication Similarity Differences

CPM Carnegie Mellon CVPR 2016 Fully Convolutional;
Implemented in Caffe

Everything else

Hourglass University of Michigan ECCV 2016 Hourglass design They use resnet as basic module;
We propose a more robust module 
as the basic building block

Part 
Heatmap
Regression

University of Nottingham ECCV 2016 Improve on Limbs They focus on part detection to aid 
heatmap regression;
We focus on implicitly learning better 
limb prior.
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❑ Major Contributions

▪ We designed a novel building block for more robust 
feature representation

▪ We proposed a novel feature injection technique to 
guide the CNN model to learn limb prior

▪ We proposed a novel 3D cross-heatmap NMS 
technique for human pose estimation
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❑ (1) Performance on MPII dataset

Hourglass (Michigan)
Part Heatmap Regression
CPM (CMU)
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❑ (2) Performance on LSP dataset

Part Heatmap Regression
CPM (CMU)
DeeperCut 
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❑ (2) Performance on LSP dataset
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❑ Motivation
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❑ Methodology
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❑ Methodology
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❑ Overview of the Network



Single-Person Human Pose Estimation

4/24/2018 10:36 PM50

❑ Mid-level Abstraction: Hourglass Design
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❑ Basic Module: Inception-resnet module
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❑ Loss Functions

where
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❑ Cross-Heatmap Non-maximum Suppression

▪ For each heatmap channel, detect blobs
▪ Rank all of them to a list by confidence. From the top 

blob:
▪ Make this blob the final detection of its heatmap
▪ Suppress other blobs from the same heatmap
▪ Suppress blobs from other heatmap channels that are 

close to this blob in image coordinate system
▪ Until no blobs can be further removed
▪ If a channel has no blob left, find the maximum pixel in 

this heatmap
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❑ Cross-Heatmap Non-maximum Suppression

▪ Results are from our earliest poor pose estimator

3D-NMS
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❑ Implementation Details
• Preprocessing

• Input image is normalized by mean subtraction at each channel
• Data augmentation by: rotation, flipping, cropping

• Training Details
• RMSProp Optimization
• Learning rate = 10^4, then step-decrease to 10^-6
• Momentum (not applicable)
• Batchsize = 12
• Epoches >= 300
• Heatmap: Gaussian with variance of 1.3
• Weight gradient responses on background and joints, otherwise the network converge to zero. 

• Training time: 
• 3 days to reach 93.9% (4 TITAN X)
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❑ Ablation Study
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❑ Qualitative Results of MPII
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❑ Qualitative Results of LSP
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Human Pose Estimation with Adversarial Training
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❑ Remaining Problems
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❑ Motivation

▪ For the first kind of failure, full occlusion of 2 or more adjacent 
body parts are hard to recover, as visual information from the RGB 
image is inadequate to resolve the ambiguity.

▪ For the second kind of failure, the mistakes are partly due to the 
body part noises from other persons and partly due to the 
occlusion of a single body part. These weak ambiguities can surely 
be mitigated with proper pose prior.
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❑ Introduction to GAN
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❑ Introduction to cGAN
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❑ Introduction to cGAN
▪ Image-to-image: Pixel Level Translation
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(1) Proposed Method



HPE with Adversarial Training

4/24/2018 10:36 PM66

(2) Modules with Input and Output Details:
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(3) Modules with Implementation Details:
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(3) Modules with Implementation Details (Continued):
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Mitigated Results
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Pose-Conditioned Image Synthesis Results
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Semantic Segmentation and Human Parsing
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Parsing-Conditioned Image Synthesis Results
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Parsing results comparison: Original image VS synthetic image
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Parsing results on ATR test set:
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Multi-person Human Pose Estimation: PoseTrack 
Challenge
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❑ Related Work: PAF
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❑ Related Work: Dual-path networks



Multi-Person Human Pose Estimation

4/24/2018 10:36 PM78

❑ PoseTrack Challenge Results
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❑ Proposed Network
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❑ Proposed DPN Block
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❑ PoSeg: Pose & Segmentation
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❑ Human Parsing



Human Pose Estimation and Applications

• Innovative PoSeg Network:
Joint Pose & Segmentation

- Computation
- Memory
- Storage
- Power 

• PoSeg Network Results

Model training
› PoSeg on Tensorflow
› Nvidia TITANx2 GPUs
› Only 50ms inference
› Single backbone 

• AR / Mobile Applications

(2) Thinner: 
➢ Make Person Look Thinner

Guanghan Ning, JD.COM

(2). Train Human Pose Estimation to 
aid Human Parsing, aiming at higher 
accuracy and used for fashion clothing 
item segmentation and retrieval. 

Model training
› PoSeg on Pytorch
› Nvidia P40x4 GPUs
› Two backbones  

(1) WingAdder: 
➢ Add Special Effects

What is Human Pose Estimation?
➢ Detect the keypoints of human joints

(1). Train a single joint network that does 
two jobs, designed for higher speed and 
used for AR / mobile applications. 
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❑ Video Demo: https://youtu.be/f5hbo7lnuLI

YouTube Video

https://youtu.be/f5hbo7lnuLI
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The End


